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SUMMARY 

A numerical method for solving the problem of transient convective diffusion with a first-order chemical reaction 
is presented in this paper. The method is applicable over an infinite region. For steady problems the combined 
method of finite and boundary elements is recognized as a successful numerical technique for dealing with an 
infinite region. The present method is also useful in transient problems. In order to formulate the combined 
method for transient problems, we have developed a new method. In this paper the Laplace transform method 
incorporating the combined finite and boundary element methods will be considered. This transformation, holding 
complex values, transforms the transient problem into a steady state form. We also consider the present numerical 
solution which is obtained by using the numerical inverse Laplace transform as presented by Hosono. In numerical 
experiments the present method gives us an extremely accurate solution. 

KEY WORDS: Laplace transform; combined method; transient problem; chemical reaction; convective diffision; infinite region; 
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1. INTRODUCTION 

A numerical method is presented for anlaysing the transient convective diffusion problem with a first- 
order chemical reaction defined on an infinite region. The present method for transient problems is 
based on the combined finite and boundary element methods' using the Laplace transform. For the 
time integration a numerical inverse Laplace transform presented by Hosono' has been successfully 
employed. 

The finite element method is one of the usehl numerical tools for analysing these problems. It is 
however, difficult to analyse a problem defined on an infinite region by use of the finite element 
method. The boundary element method satisfies unconditionally the infinite boundary condition by 
assuming that the problem is linear. However, the boundary element method has difficulties in solving 
problems involving non-homogeneous fields, because it is difficult to obtain the fundamental solution 
explicitly. If we appropriately combine the finite and boundary element methods, it is obvious that a 
method which avoids the difficulties of the two individual methods can be obtained. For steady 
problems the combined method is recognized as a successlid numerical technique for dealing with 
infinite domains. This method is also useful in transient problems. 
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In the computation of a transient problem using the boundary element method, domain discretization 
must be employed to integrate over the infinite region. Furthermore, difficulties arise when the integral 
domain has to be expanded according to the expansion of the diffusion domain. The above-mentioned 
difficulties can be overcome by introducing the Laplace t ran~form.~-~  The time dependency of the 
problem can be temporarily removed by this method. 

Rizzo and Shippy3 first applied the direct formulation of the boundary element method in 
conjunction with the Laplace transform to solve the transient heat conduction problem. The transform 
inversion in their paper is essentially a curve-fitting process. It is important to have some knowledge of 
the expected behaviour of the solution in order to select values of the transform parameters, since the 
curve will not be represented correctly if the parameters are not selected suitably. 

Hosono’s numerical Laplace inversion’ is very useful since it can be applied to general cases without 
any knowledge of the expected behaviour of the solution. Tazaki et aL8 presented the boundary 
element method in conjunction with this transform inversion to solve the problem of transient heat 
conduction. Okamoto and Kawahara’ applied this transform inversion to the boundary element method 
in order to solve the convective diffusion problem with a first-order chemical reaction. The 
effectiveness of the Hosono method has been shown in several numerical examples.829 

In this paper the approach of Hosono is applied to both the finite and boundary element regions and 
excellent results are obtained. The validity of the present method is shown via several numerical 
experiments. 

2. BASIC EQUATION AND ITS LAPLACE TRANSFORM 

The transient convective diffusion problem with a first-order chemical reaction in SZ x I ,  where R is a 
dimensional ( d =  1, 2 or 3) infinite region and I is a time interval, is expressed as 

D V ’ C ~  + v . VCA + kcA = o in ~2 x I ,  (1) 
acA 

at 
~- 

where CA = CA(P,  t) represents the concentration of component A and is a function of the position 
P= ( X I ,  X2, X3)  in Cartesian co-ordinates xl, x2, x3 and the time variable t .  The symbols 
V, 0, v = v(P) and k denote the gradient operator, the constant difisivity, the velocity vector and 
the reaction rate constant respectively. SZ is constructed with the finite element region i2(F) and the 
boundary element region (Figure 1). Suppose that the boundary r is split into two parts rl and 
r2. Then as the boundary conditions on (I), the following Dirichlet-type and Neumann-type 
conditions are considered: 

cA(P, t> = CA(P,  t )  on rl  , (2) 

Figure 1 .  Internal (finite elements) and external regions 
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where the overbar denotes a prescribed fimction and n is the outer normal unit vector on the boundary. 
The initial condition is imposed as 

CA(P, 0)  = CAO(P) in R. (4) 

At infinity the boundary condition can be expressed as 

CA(P,t) = o ,  P +  00. (5) 

To remove the dependence of the time variable, the Laplace transform is applied to this problem. 
Employing the Laplace transform in (l), we obtain 

- D v 2 u  + V .  vu + (S + k)U - CAO = 0,  (6)  
where U =  U(P, s) is defined by 

00 

u(p ,  S) = ~ [ C A ( P ,  t)] = lo e-S'CAdt. 

In the Laplace transform space, equations (2) and (3) become respectively 

(7) 

Note that equation (6)  is similar to the steady state convective diffusion problem with a first-order 
chemical reaction, except that the function is complex-valued; the boundary element method in 
Reference 10 can be used. The formulation satisfies the boundary condition at infinity in (5) because 
of the property of the fundamental solution. For simplicity it is assumed that CAo = 0 throughout this 
paper. 

3. BOUNDARY ELEMENT METHOD 

Green's second identity over R for (6) can be expressed as 
F 

where L*[.] and U: are the adjoint operator and the adjoint potential field to U respectively and TI 
denotes the interface between the finite and boundary element regions. The d-dimensional fundamental 
solution U: should satisfy 

L*[U:] = -DV2U: - V . (vU:) + kU* = 6(P, - P ) ,  (1 1) 

in which Pi is an arbitrary source point and P is a reference point. The d-dimensional fundamental 
solutions U:(P,, P) are given by" 

u*- 1 - (J - exp (-;Dr -- IPrI), 
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where 
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and Kf) denotes the complex modified Bessel function of the second kind of order zero. The 
fundamental solutions satisfy the boundary condition at infinity in (5 ) .  By choosing U: instead of 
U.in (10) and applying (6) and (1 1) to (lo), the following integral equation is obtained: 

For d = 2, alan = n,(a/&) + n,,(a/+) and a(Pi) is a weight depending on tbe solid angle of R, defined 
bY 

Here &Pi) is the external angle on the outer side of the internal region if the boundary element is used 
in the external region. Assume that the interface is divided into M linear boundary elements 
(j = I ,  2, . . . , m). Then the discretization of (1 8) gives 

[HI[ul~I = [c;l[QlFT. (20) 

Since equation (6) includes the chemical reaction term s + k, the conservation law for the 
calculation of diagonal components of the matrix H cannot be satisfied. Namely, the diagonal 
component Hii of the matrix H is 

and the isoplethic concentration line and TI are not orthogonal to each other. Notice that Hii must be 
calculated by 

4. COMBINATION OF FINITE AND BOUNDARY ELEMENT METHODS 

The combined method of the finite and boundary element methods will be described. The boundary 
elements are transformed into the equivalent finite elements. 

For simplicity let TI of (20) be denoted as 1. Multiplying both sides of (20) by [GI-', the following 
equation is obtained 

[q-"HI[u(B)l;r = [Q(B)l:, (23) 
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where (B) denotes the boundary element region. In the internal region, equation (6) is discretized by 
the finite element method and then the following equation is obtained: 

where (F) denotes the finite element region. Here the matrix is expressed by separating the interface I 
and the internal region R which is not involved with the interface. 

In combining (23) and (24), there is a slightly difficult problem, since Q is the flux at the node 
whereas Qv is the volume flux crossing the element on the interface. Using the transformation matrix 
A ,  which can be considered as the continuity of the energy flow transmitted in the finite and boundary 
element regions, the following equation is obtained: 

[QF'l: = [Al[e'B'lT. (25) 

Via the relation [U(F)]: = [V(*)$ and from (23x25)  the boundary elements can be transformed into 
the equivalent finite-elements. Then the resulting global matrix is assembled as 

The transformation matrix for the two-dimensional case is"" 

P I  = 

where a1 = 3 ,  a2 = f and li are the sizes of the combined finite and boundary elements. 

5.  INVERSE LAPLACE TRANSFORM 

The inverse Laplace transform formula proposed by Hoson' is used in this paper. This formula has a 
great advantage since its applicable range is quite wide and its computational time is shorter than that 
for other formulae. The definition of the Laplace transform tof(t) is 

F(s) = 1; e-"(t) dt (28) 

when t > 0. The inverse Laplace transform to F(s) is given as 
I ra+icc 

wheref(t) is the function and F(s) is the transformed function. The function es is approximated as 
,a 
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where a is a positive number. When tends to infinity, then 

e" e" = lim 
Q+W 2 cosh(a - S) 

The function Eec(s, a) introduced in formulating the numerical inverse Laplace transform is written as 

Substituting (32) into (29), we have 
1 a+im 

fec = 0, a> = - 2ni F(s)Eec(s, a)&. 

The following conditions are assumed for a functionf(t): 

(a) f ( t )  E L'(0, R )  for any positive real number R 
(b) when t + 00 for any positive number y, f(f) = O(eY? 
(c) f ( t )  is a real function for t .  

Carrying out the complex integration, the following equation is obtained: 

(33) 

where Im means imaginary part. An approximate value of the inverse Laplace transform is obtained 
from (34). Because (34) is an alternating series, the rate of convergence is not as fast. Thus it is not 
wise to calculate the numerical inverse Laplace transform with (34). It is well known that the Euler 
transform is an acceleration method for alternating series. If the Euler transformatin is applied to (34), 
we obtain 

where 

and A , ,  is determined recursively by the formulae 

Here (t) denotes the binomial coefficient. Using (35), the numerical inverse Laplace transform of the 
numerical solution of (6) can be obtained. A numerical transform inverse procedure is then employed 
to compute the physical variables in the actual space. 

6. COMPUTATIONAL PROCEDURE 

The computational procedure is as follows. 

1. Carry out the Laplace transform of the basic equation and the boundary conditions; then (6) can 
be rewritten as 
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where 

(T + i(n - 0 . 5 ) ~  
t 

s, = (39) 

2. Discretize (38) by the combined method (here sn + k corresponds to k in Reference 1 and 
compute the field variables on the transformed space (the complex plane). 
On implementation, set the time variable t in the actual space. Obtain the approximate value of 
Un on the transformed plane using the parameters sn corresponding to each n. Repeat this 
procedure for n= 1, . . . , I + p .  

3. Carry out the inverse Laplace transforms using (35). As a result, the approximate solution Cf; on 
the physical plane can be derived. In the authors' numerical experiments, suitable values of the 
number of terms I, p and parameter c are indicated as follows: 

(a) ,I = 12, p = 7, (T = 5.5 for calculation with single precision 
(b) I = 15, p = 10, (T = 10.0 for calculation with double precision. 

7. NUMERICAL EXAMPLES 

To examine the validity of the present method, three types of numerical experiments are carried out. 
The following non-dimensional parameters are used: the non-dimensional concentration of the reactant 
CD = CA/CAl, the non-dimensional time T= Dtlb2, the non-dimensional co-ordinates X=xl lb  and 
Y = x21b, the non-dimensional reaction rate constant K = kb2/D and the non-dimensional velocity 
(Vx, V,) becomes Vx E Pe = v,bID and V, = v2b/D, in which Pe is the Peclet number, 
CAl is the characteristic concentration of the reactant and b is the characteristic length. The initial 
condition is assumed as @(X, 0) = 0. The solution is characterized by K and Pe. 

Example 1 (one-dimensional case) 

Figure 2 shows the illustration of Example 1, where the finite element region (FE region in figures) 
is divided into 10 linear finite elements and the boundary element region (BE region) is combined at 
the point X =  1. The boundary conditions are prescribed as follows: 

BC1 @(O, 7') = 1 ,  BC2 @(oo, 7') = 0. 

Figure 3 shows the computed results for Example 1, where the full curves are the exact solutions. It 
is seen that the transient numerical solutions of the combined method in conjunction with the Laplace 
transform are in good agreement with the exact solutions. Figure 4 shows the errors, which are less 
than 0.003 for Pe= 10.0 and K =  10.0. 

Example 2 (two-dimensional case) 

Figure 5 shows the geometry of Example 2,  where the finite element region (0 < X ,  Y < 1) is 
discretized into 200 triangular elements, the boundary element region is combined at X =  1 and the 

Figure 2. Numerical model for Example 1 (one-dimensional) 
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Figure 3. Numerical solutions for Example 1 

flow direction is fixed parallel to the X-co-ordinate. Example 2 is treated as a duct problem. The 
analytical solution for this problem has not been obtained. Instead of the exact solution, the andytical 
solution obtained for the following boundary conditions is used for comparison: 

BCl @(O, Y ,  7) = 1, BC2 a@(X, 0, T)an = a@(X, 1, T)/an = 0, BC3 @(oo, Y ,  2') = 0. 

The numerical results are approximately compared with the analytical solution at the central axis 
(Y = 0.5). The boundary elements we used are linear elements, where the components Hi/ and Gi/ (i 
are evaluated numerically with the eight-point Gaussian quadrature rule and the diagonal components 
Hii and Gii are evaluated with the 20-point Gaussian quadrature rule. The numerical solutions for 
Examples 1 and 2 are calculated with double precision. Figure 6 shows the results along Y =  0.5 for 
Example 2. Figure 7 shows the errors, which are less than 0.012 for Pe= 30-0 and K =  10-0. Good 
results are obtained; hence it is shown that this method is applicable to the analysis of the duct problem 
with an open outlet. 
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a@/an = 0 

Figure 5.  Numerical model for Example 2 (two-dimensional) 
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Figure 7. Enors in numerical solutions for Example 2 
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Figure 8. Numerical model for Example 3 (two-dimensional) 

Example 3 (two-dimensional case) 

Figure 8 illustrates the Example 3, where the finite element region is discretized into 992 triangular 
elements and the boundary element region is combined around the finite element region. The reactant 
diffuses from the small square body to the infinite space. Figure 9 shows the flow distribution which is 
calculated by the shallow water equation.I2 Figure 10 shows the results for Example 3. The quasi- 
steady state numerical solutions are in very good agreement with the steady state solutions obtained in 
Reference 1. It is concluded that excellent results can be obtained by the method presented in this 
paper. The numerical results using the conventional finite element method are shown in Figure 11 for 
comparison. 

8. CONCLUSIONS 

We have presented an efficient numerical method for solving the transient convective diffusion 
problem with a first-order chemical reaction defined on an infinite region. The present method is based 
on the Laplace transform and the finite element method combined with the boundary element method. 
Hosono’s formula is applied to give the numerical solution in the physical space. 

The results can be summarized as follows. 

1. Using the present method, the time-dependent problem can be transformed into a time-dependent 
problem by means of the Laplace transform. 

2. It is well known that the boundary element method with a time-marching scheme for the transient 
problem is not adaptable to an infinite region. However, using the Laplace transform procedure, 
the time-marching integration over the spatial domain which is usually necessary in the 

--_T_ I 

Figure 9. Flow distribution for Example 3 
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(a) T = 0.03 

( b )  T = 0.07 

( c )  T = 1.00 

Figure 10. Equiconcentration contours for Pe= 10 and K =  10 

(a) T = 0.03 

( b )  T = 0.07 

I _,"I 1 

( c )  T = 1.00 

Figure 1 1 .  Equiconcentration contours using conventional FEM with Neumann boundary condition but without BEM 
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conventional boundary element analysis of transient problems is no longer necessary. The 
present transform procedure enables us to treat the problems of an infinite region by using the 
boundary element method. 

3. It is shown that the application of Hosono’s formula is an excellent procedure for both the finite 
boundary element regions. 

4. In Examples 1 and 2 the numerical solutions by the proposed method are in good agreement with 
the exact solutions, while in Example 3 the quasi-steady state solution using the Laplace 
transform procedure and the steady state solution using only the combined method are in very 
good agreement. Thus the validity of the proposed method is demonstrated. 

From these results it is concluded that the method presented in this paper is much superior to the 
conventional method. 
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